Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.107
Filtrar
1.
J. optom. (Internet) ; 17(2): [100500], Abr-Jun, 2024. tab
Artigo em Inglês | IBECS | ID: ibc-231624

RESUMO

Purpose: Visual snow syndrome (VSS) is a complex neurological condition presenting with an array of sensory, motor, and perceptual dysfunctions and related visual and non-visual symptoms. Recent laboratory studies have found subtle, basic, saccadic-based abnormalities in this population. The objective of the present investigation was to determine if saccadic-related problems could be confirmed and extended using three common clinical reading-related eye movement tests having well-developed protocols and normative databases. Methods: This was a retrospective analysis of 32 patients (ages 16–56 years) diagnosed with VSS in the first author's optometric practice. There was a battery of three reading-related tests: the Visagraph Reading Eye Movement Test, the Developmental Eye Movement (DEM) Test, and the RightEye Dynamic Vision Assessment Test, all performed using their standard documented protocols and large normative databases. Results: A high frequency of oculomotor deficits was found with all three tests. The greatest percentage was revealed with the Visagraph (56%) and the least with the RightEye (23%). A total of 77% of patients failed at least one of the three tests. Conclusion: The present findings confirm and extend earlier investigations revealing a high frequency of saccadic-based oculomotor problems in the VSS population, now including reading-related tasks. This is consistent with the more general oculomotor/motor problems found in these individuals.(AU)


Assuntos
Humanos , Masculino , Feminino , Doenças do Sistema Nervoso Central/complicações , Visão Ocular , Oftalmoplegia , Optometria , Movimentos Oculares
2.
Rev Med Virol ; 34(3): e2534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588024

RESUMO

Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.


Assuntos
Complexo AIDS Demência , Doenças do Sistema Nervoso Central , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/epidemiologia , Doenças Neuroinflamatórias , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/epidemiologia , Complexo AIDS Demência/psicologia , Doenças do Sistema Nervoso Central/etiologia , Sistema Nervoso Central
3.
Brain Nerve ; 76(4): 353-360, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589280

RESUMO

Herein, the author summarize the basic findings on the neuropathology of inflammatory and autoimmune central nervous system (CNS) diseases. Current knowledge on infectious, demyelinating, and autoimmune diseases have also been reported. Further, I emphasize the importance of considering the neuropathology of meningitis, encephalitis, and abscesses as infectious diseases; multiple sclerosis and neuromyelitis optica as demyelinating diseases; and vasculitis, paraneoplastic neurological syndrome, and collagen diseases as autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Doenças Autoimunes , Doenças do Sistema Nervoso Central , Esclerose Múltipla , Neuromielite Óptica , Humanos
4.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637801

RESUMO

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Assuntos
Peptídeos Penetradores de Células , Doenças do Sistema Nervoso Central , Humanos , Barreira Hematoencefálica/química , Células Endoteliais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Encéfalo , Doenças do Sistema Nervoso Central/tratamento farmacológico
5.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627787

RESUMO

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Assuntos
Doenças do Sistema Nervoso Central , Receptores Nucleares Órfãos , Humanos , Receptores X do Fígado , Receptores Nucleares Órfãos/metabolismo , Sistema Nervoso Central/metabolismo , Inflamação , Doenças do Sistema Nervoso Central/tratamento farmacológico
6.
BMJ Case Rep ; 17(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627057

RESUMO

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described chronic inflammatory central nervous system disease. This case report describes a young female patient presenting with weakness in bilateral upper and lower limbs and tinnitus for 2 months. A neurological examination revealed signs of brainstem and cerebellar involvement. MRI brain showed characteristic features of CLIPPERS, with punctate and nodular enhancement in the pons and cerebellum. Differential diagnoses were systematically considered and excluded. The patient showed significant clinical and radiological improvement with steroid therapy. No clinical or radiological red flags occurred during the follow-up. This case underscores the critical role of integrating clinical and radiological findings to effectively diagnose and manage CLIPPERS. It emphasises the importance of ruling out alternative diagnoses through a thorough evaluation.


Assuntos
Doenças do Sistema Nervoso Central , Inflamação , Humanos , Feminino , Inflamação/diagnóstico , Ponte/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/diagnóstico por imagem , Esteroides/uso terapêutico , Imageamento por Ressonância Magnética
7.
Clin Biochem ; 126: 110746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462203

RESUMO

A rapidly expanding repertoire of neural antibody biomarkers exists for autoimmune central nervous system (CNS) disorders. Following clinical recognition of an autoimmune CNS disorder, the detection of a neural antibody facilitates diagnosis and informs prognosis and management. This review considers the phenotypes, diagnostic assay methodologies, and clinical utility of neural antibodies in autoimmune CNS disorders. Autoimmune CNS disorders may present with a diverse range of clinical features. Clinical phenotype should inform the neural antibodies selected for testing via the use of phenotype-specific panels. Both serum and cerebrospinal fluid (CSF) are preferred in the vast majority of cases but for some analytes either CSF (e.g. N-methyl-D-aspartate receptor [NMDA-R] IgG) or serum (e.g. aquaporin-4 [AQP4] IgG) specimens may be preferred. Screening using 2 methods is recommended for most analytes, particularly paraneoplastic antibodies. We utilize murine tissue-based indirect immunofluorescence assay (TIFA) with subsequent confirmatory protein-specific testing. The cellular location of the target antigen informs choice of confirmatory diagnostic assay (e.g. blot for intracellular antigens such as Hu; cell-based assay for cell surface targets such as leucine-rich glioma inactivated 1 [LGI1]). Titers of positive results have limited diagnostic utility with the exception of glutamic acid decarboxylase (GAD) 65 IgG autoimmunity, which is associated with neurological disease at higher values. While novel antibodies are typically discovered using established techniques such as TIFA and immunoprecipitation-mass spectrometry, more recent high-throughput molecular technologies (such as protein microarray and phage-display immunoprecipitation sequencing) may expedite the process of antibody discovery. Individual neural antibodies inform the clinician regarding the clinical associations, oncological risk stratification and tumor histology, the likely prognosis, and immunotherapy choice. In the era of neural antibody biomarkers for autoimmune CNS disorders, access to appropriate laboratory assays for neural antibodies is of critical importance in the diagnosis and management of these disorders.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Doenças do Sistema Nervoso Central , Humanos , Animais , Camundongos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Autoanticorpos , Biomarcadores , Imunoglobulina G
8.
Intern Med ; 63(5): 687-692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432894

RESUMO

17q12 deletion syndrome is a rare chromosomal anomaly with variable phenotypes, caused by the heterozygous deletion of chromosome 17q12. We herein report a 35-year-old Japanese patient with chromosomal 17q12 deletion syndrome identified by de novo deletion of the 1.46 Mb segment at the 17q12 band by genetic analyses. He exhibited a wide range of phenotypes, such as maturity-onset diabetes of the young (MODY) type 5, structural or functional abnormalities of the kidney, liver, and pancreas; facial dysmorphic features, electrolyte disorders; keratoconus, and acquired perforating dermatosis. This case report provides valuable resources concerning the clinical spectrum of rare 17q12 deletion syndrome.


Assuntos
Doenças do Sistema Nervoso Central , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2 , Doenças Renais Císticas , Masculino , Humanos , Adulto , Japão , Face , Heterozigoto
9.
Mil Med Res ; 11(1): 19, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549161

RESUMO

Drug delivery systems (DDS) have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery. However, the access of nanoparticles/drugs to the central nervous system (CNS) remains a challenge mainly due to the obstruction from brain barriers. Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery. Herein, we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood-brain barrier. We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS, as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases. Finally, we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.


Assuntos
Doenças do Sistema Nervoso Central , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos , Encéfalo , Barreira Hematoencefálica , Doenças do Sistema Nervoso Central/tratamento farmacológico , Nanopartículas/uso terapêutico
10.
J Neuroinflammation ; 21(1): 67, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481312

RESUMO

Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.


Assuntos
Doenças do Sistema Nervoso Central , Sistema Nervoso Central , Humanos , Sistema Nervoso Central/patologia , Macrófagos/patologia , Microglia/patologia , Encéfalo/patologia
11.
Handb Clin Neurol ; 200: 11-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494272

RESUMO

Paraneoplastic neurologic syndromes are a group of rare disorders that have fascinated neurologists for more than a century. The discovery in the 1980s that many of these disorders occurred in association with antibodies against neuronal proteins revived the interest for these diseases. This chapter first traces the history of the paraneoplastic neurologic syndromes during the era that preceded the discovery of immune mechanisms and then reviews the immunologic period during which many of these syndromes were found to be associated with antibodies against intracellular onconeuronal proteins and pathogenic cytotoxic T-cell mechanisms. Alongside these developments, investigations on the antibody-mediated disorders of the peripheral nervous system, such as the myasthenic syndromes or neuromyotonia, provided suggestions for the study of the central nervous system (CNS) syndromes. These converging areas of research culminated with the groundbreaking discovery of a new category of CNS disorders mediated by antibodies against neuronal surface proteins or receptors. These disorders are not always paraneoplastic, and the understanding of these syndromes and mechanisms has changed the landscape of neurology and neurosciences.


Assuntos
Doenças do Sistema Nervoso Central , Neoplasias , Neurologia , Síndromes Paraneoplásicas do Sistema Nervoso , Humanos , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico , Autoanticorpos , Neoplasias/complicações , Doenças do Sistema Nervoso Central/complicações
12.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474374

RESUMO

Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Mitocondriais , Humanos , Mitocôndrias/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Doenças Mitocondriais/metabolismo
13.
CNS Neurosci Ther ; 30(3): e14677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497529

RESUMO

BACKGROUND: Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS: This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION: The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Exossomos , Humanos , Exossomos/metabolismo , Proteínas/metabolismo , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/metabolismo
15.
Nat Commun ; 15(1): 2532, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514653

RESUMO

Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.


Assuntos
Doenças do Sistema Nervoso Central , Parechovirus , Infecções por Picornaviridae , Humanos , Parechovirus/genética , Proteômica , Inflamação , Encéfalo , Enterovirus Humano B
16.
Neurology ; 102(7): e209199, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38447115

RESUMO

OBJECTIVES: To assess the clinical significance of myelin oligodendrocyte glycoprotein antibodies (MOG-abs) restricted to CSF in children with inflammatory CNS disorders. METHODS: Patients included 760 children (younger than 18 years) from 3 multicenter prospective cohort studies: (A) acquired demyelinating syndromes, including acute disseminated encephalomyelitis (ADEM); (B) non-ADEM encephalitis; and (C) noninflammatory neurologic disorders. For all cases, paired serum/CSF samples were systematically examined using brain immunohistochemistry and live cell-based assays. RESULTS: A total of 109 patients (14%) had MOG-abs in serum or CSF: 79 from cohort A, 30 from B, and none from C. Of these, 63 (58%) had antibodies in both samples, 37 (34%) only in serum, and 9 (8%) only in CSF. Children with MOG-abs only in CSF were older than those with MOG-abs only in serum or in both samples (median 12 vs 6 vs 5 years, p = 0.0002) and were more likely to have CSF oligoclonal bands (86% vs 12% vs 7%, p = 0.0001) and be diagnosed with multiple sclerosis (6/9 [67%] vs 0/37 [0%] vs 1/63 [2%], p < 0.0001). DISCUSSION: Detection of MOG-abs in serum or CSF is associated with CNS inflammatory disorders. Children with MOG-abs restricted to CSF are more likely to have CSF oligoclonal bands and multiple sclerosis than those with MOG-abs detectable in serum.


Assuntos
Doenças do Sistema Nervoso Central , Encefalomielite Aguda Disseminada , Esclerose Múltipla , Criança , Humanos , Bandas Oligoclonais , Estudos Prospectivos , Anticorpos
17.
Methods Mol Biol ; 2761: 1-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427225

RESUMO

Detection of merely apoptosis does not reveal the type of central nervous system (CNS) cells that are dying in the CNS diseases and injuries. In situ detection and estimation of amount of apoptosis specifically in neurons or glial cells (astrocytes, oligodendrocytes, and microglia) can unveil valuable information for designing therapeutics for protection of the CNS cells and functional recovery. A method was first developed and reported from our laboratory for in situ detection and estimation of amount of apoptosis precisely in neurons and glial cells using in vitro and in vivo models of CNS diseases and injuries. This is a combination of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and double immunofluorescent labeling (DIFL) or simply TUNEL-n-DIFL method for in situ detection and estimation of amount of apoptosis in a specific CNS cell type. An anti-digoxigenin (DIG) IgG antibody conjugated with 7-amino-4-methylcoumarin-3-acetic acid (AMCA) for blue fluorescence, fluorescein isothiocyanate (FITC) for green fluorescence, or Texas Red (TR) for red fluorescence can be used for in situ detection of apoptotic cell DNA, which is earlier labeled with TUNEL using alkali-stable DIG-11-dUTP. A primary anti-NeuN (neurons), anti-GFAP (astrocytes), anti-MBP (oligodendrocytes), or anti-OX-42 (microglia) IgG antibody and a secondary IgG antibody conjugated with one of the above fluorophores (other than that of ani-DIG antibody) are used for in situ detection of apoptosis in a specific CNS cell type in the mixed culture and animal models of the CNS diseases and injuries.


Assuntos
Apoptose , Doenças do Sistema Nervoso Central , Animais , Marcação In Situ das Extremidades Cortadas , Apoptose/genética , Neuroglia , Neurônios/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Imunoglobulina G/metabolismo
18.
Adv Drug Deliv Rev ; 208: 115274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452815

RESUMO

Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Ultrassonografia/métodos , Barreira Hematoencefálica/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Doenças do Sistema Nervoso Central/diagnóstico por imagem , Doenças do Sistema Nervoso Central/tratamento farmacológico
19.
Adv Drug Deliv Rev ; 208: 115283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494152

RESUMO

Neurological disorders are a diverse group of conditions that pose an increasing health burden worldwide. There is a general lack of effective therapies due to multiple reasons, of which a key obstacle is the presence of the blood-brain barrier, which limits drug delivery to the central nervous system, and generally restricts the pool of candidate drugs to small, lipophilic molecules. However, in many cases, these are unable to target key pathways in the pathogenesis of neurological disorders. As a group, RNA therapies have shown tremendous promise in treating various conditions because they offer unique opportunities for specific targeting by leveraging Watson-Crick base pairing systems, opening up possibilities to modulate pathological mechanisms that previously could not be addressed by small molecules or antibody-protein interactions. This potential paradigm shift in disease management has been enabled by recent advances in synthesizing, purifying, and delivering RNA. This review explores the use of RNA-based therapies specifically for central nervous system disorders, where we highlight the inherent limitations of RNA therapy and present strategies to augment the effectiveness of RNA therapeutics, including physical, chemical, and biological methods. We then describe translational challenges to the widespread use of RNA therapies and close with a consideration of future prospects in this field.


Assuntos
Doenças do Sistema Nervoso Central , Nanopartículas , Humanos , RNA/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos
20.
J Med Case Rep ; 18(1): 53, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347580

RESUMO

BACKGROUND: Neurosarcoidosis occurs symptomatically in 5-10% of patients with sarcoidosis, and hydrocephalus is a rare complication of neurosarcoidosis, with either acute or subacute onset and presenting symptoms related to increased intracranial pressure. It represents a potentially fatal manifestation with a mortality rate of 22% (increased to 75% in case of coexistence of seizures) that requires a prompt initiation of treatment. High-dose intravenous corticosteroid treatment and neurosurgical treatment must be considered in all cases of neurosarcoidosis hydrocephalus. CASE PRESENTATION: Here we present a case of hydrocephalus in neurosarcoidosis, complicated by generalized seizures, in a 29-year-old Caucasian male patient treated with medical treatment only, with optimal response. CONCLUSION: Since neurosurgery treatment can lead to severe complications, this case report underlines the possibility to undergo only medical treatment in selected cases. Further studies are needed to stratify patients and better identify those eligible for only medical approach.


Assuntos
Doenças do Sistema Nervoso Central , Hidrocefalia , Sarcoidose , Humanos , Masculino , Adulto , Doenças do Sistema Nervoso Central/complicações , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/diagnóstico , Hidrocefalia/complicações , Hidrocefalia/tratamento farmacológico , Sarcoidose/complicações , Sarcoidose/tratamento farmacológico , Sarcoidose/diagnóstico , Corticosteroides/uso terapêutico , Convulsões/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...